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The ef fec t  of the ex te rna l  f ie ld on the s t ruc tu re  of the l i q u i d - v a p o r  t rans i t ion  l aye r  of a b inary  
mix tu re  in the c r i t i ca l  s ta te  of vapor iza t ion  is invest igated.  

The s t rong  inc rea se  in the suscept ib i l i ty  of a binary mix tu re  to ex te rna l  influences close to the c r i t i ca l  
s ta te  of vapor iza t ion  is ,  as is well  known, the r e a son  for  the cons iderable  spat ia l  nonuniformity of the p r o p e r -  
t ies  of the s y s t e m  along the d i rec t ion  of the ex te rna l  f ield (e.g.,  the gravi ta t ional  field). This  phenomenon has  
been cal led the hydros t a t i c  effect .  Two f o r m s  of hydros ta t i c  ef fec t  can be dist inguished:  1) the m a c r o h y d r o -  
s ta t ic  effect  and 2) the m i c rohyd ros t a t i c  effect .  The m a c r o h y d r o s t a t i c  effect  p roduces  nonuniformit ies  of s ize  
g r ea t e r  than the co r re la t ion  radius  of the f luctuations of the c h a r a c t e r i s t i c  o rde r  p a r a m e t e r  (in this case  f luc-  
tuations in the total densi ty  of the mix tu re ) ,  while the s y s t e m  is a s sumed  to be un i form within the l imi t s  of the 
co r re la t ion  rad ius .  The m i c rohyd ros t a t i c  ef fec t  p roduces  nonuniformit ies  in regions  comparab le  with the c o r -  
re la t ion  radius  [1]. I t  should be noted that  the mic rohyd ros t a t i c  ef fec t  is fa i r ly  not iceable in nar row regions  
close to the level  with c r i t i ca l  densi ty  and it af fects  those physica l  quanti t ies  which de te rmine  the p r o p e r t i e s  
(surface tension,  densi ty p ro i l e ,  etc.)  of the t rans i t ion  l aye r  between the liquid and vapor  (the in terface) .  

The m a c r o h y d r o s t a t i c  ef fec t  in b inary  mix tu re s  close to the c r i t i ca l  s ta te  of vapor iza t ion  has  been con- 
s idered  in [2, 3] us ing the c l a s s i ca l  theory of phase  t r ans i t ions ,  and in [4, 5] using the sca le  equation of s ta te  
[6]. The s t ruc tu re  of the t rans i t ion  l a y e r  in b inary  mix tu res  has  been inves t igated in [7] without taking into 
account  the gravi ta t ional  field. The mic rog rav i t a t i ona l  ef fec t  in b inary  solutions has  been studied by s t a t i s t i -  
cal methods in [8]. 

In this pape r  we will cons ider  the hydros ta t i c  effects  and the s t ruc tu re  of the t rans i t ion  l aye r  of a b inary  
mix tu re  close to the c r i t i ca l  s ta te  using the L a n d a u - G i n z b u r g  Hamil tonian genera l ized  to the case  of a binary 
mix tu re ,  and the approx imate  theory of the r eno rma l i za t ion  group [9]. 

We will  wr i t e  the model  L a n d a u - G i n z b u r g  Hamil tonian for  a b inary  mix tu re  with component  densi t ies  Pi 
(i = 1, 2) close to the c r i t i ca l  s ta te  of vapor iza t ion  in an ex te rna l  field in the f o r m  [10] 

Heff{AP} = S dr {D (x) [VAp (r)] 2 + R (x, x)[hp (r)] ~ + U (~, x)[hp (r)]' - -  Zhp (r)}, (1) 

where  &p(r) = 0 ( r ) -  <p(r)) is the local  deviat ion of the total densi ty  of the b inary  mix tu re  0 = Pl + 02 f rom the 
mean  value at  the point r ,  and x = Pl/0 is the concentra t ion of the mix ture .  The quanti t ies  R f f ,  x) and Uff ,  x) 
a r e  re la ted  to Ri and U i of the pure  components  by means  of e x p r e s s i o n s ,  expl ic i t  f o r m s  of which a r e  given in 
[10]. The nonlocal p r o p e r t i e s  of the s y s t e m  close to the c r i t i ca l  s ta te  a r e  desc r ibed  by the gradient  t e r m  
D(x)[VAp(r)] 2, where  the p a r a m e t e r  D(x) is r e la ted  to the radius  of i n t e rmolecu la r  in te rac t ion  in the mix ture .  
The t e r m  ZAp(r) defines the act ion of the ex te rna l  f ield on the sys t em.  Here  Z = pcgh/P c is the field va r i ab l e ,  
Pc and Pc a r e  the c r i t i ca l  va lues  of the densi ty  and p r e s s u r e  of the mix tu r e ,  h is the height  m e a s u r e d  f r o m  the 
c r i t i ca l  l eve l ,  T = [T-Tc(x) ] /Tc(X) ;  T c is the c r i t i ca l  t empe ra tu r e .  

We will  consider  the m a c r o h y d r o s t a t i c  af fec t  using Hamil tonian (1). I t  is well  known that the nonlocal 
t e r m  ~ [YAp(r)] 2 is of the same  o rde r  as  the o ther  t e r m s  of Hamil tonian (1) only in a sma l l  region comparab le  
with the co r re l a t ion  radius  R c. When cons ider ing  the m a c r o h y d r o s t a t i c  effect ,  which is impor tan t  outside this 
region,  the t e r m  D[~TAp(r)l 2 in (1) can be neglected.  Then,  f r o m  the condition 

OHeff/OA p = 0 (2) 
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we obtain the following equation for  the equilibrium value of the o rder  pa r ame te r  &P0 = (P-Pc)/Pc:  

2R (% x) Apo (Z) ~' 4U (% x) [Apo (Z)l s --'Z = 0. (3) 

The solution (3) has the fo rm 

3,r Z Z 2 i /  Z )2 

We recal l  that express ion  (4) only holds for  regions Z > Z0, where Z 0 is the thickness of the interface,  whose 
dimensions will be determined below. F rom (4), taking into account the renormal iza t ion  of the pa r ame te r s  R 
and U of the Hamiltonian, which follows f rom the approximate theory of the Wilson renormal iza t ion  group [9, 
10], at t empera tures  T > T c we have 

Ap0(Z,% x)=Z/  2~(x) lq 1 ~ (5) 
' 9 r  ( x )  - w  

for  a direct ion isomorphous with the cr i t ical  i soehore  which sat isf ies  the condition (R/6U) 7> (Z/SU)3, 

Ap0 (Z, x) NZ 1/(3+ev/13) (6) 

for  the cr i t ical  isotherm. Here e = 4 - d, where d is the dimensionali ty of the space,  v ~ 0.6;/3 ~ 0.3 are  the 
cr i t ica l  indices,  and C(x) is a pa rame te r  which depends on the concentration and is determined in [10]. Ex-  
press ions  (5) and (6) cor rec t ly  descr ibe  the experimental  resul ts  for  the density profi le in the cr i t ical  binary 
mixtures  in a gravitational field and differ considerably f rom the corresponding resul ts  of the c lass ica l  theory 
of the maerohydros ta t i c  effect [2]. 

Consider the s t ruc ture  of the l i q u i d - v a p o r  transit ion layer  of a binary mixture in the region of the c r i t i -  
cal state of vaporizat ion.  We will f i r s t  obtain an express ion for  the density profile in the interphase when there 
is no external  field. To do this we will s t a r t  f rom the Hamiltonian, which has fo rm (1), in which we take as the 
expansion p a r a m e t e r  the quantity (&Oi-aP0) , which specifies the local variat ion in the o rder  pa rame te r  of the 
mixture taking into account the effects of spatial d ispers ion (Ap i is the order  pa r ame te r  in the interface,  and 
AOo is the value of the o rde r  pa r ame te r  outside the interface,  i .e . ,  ~ [VApi] 2) ignoring the term. The effective 
Hamiltonian (1) with this expansion pa rame te r  descr ibes  the total variat ion in the energy of the sys tem with the 
"inclusion" of the nonlocality. The equil ibrium value of (Api--Ap0) is found f rom condition (2), which with (1) 
leads to the Euler  equation, which has the fo rm [11] 

--D [VAPi]z + R (Api -- Ap0)2 + U [APi-- Ap0] 4 -~ const (7) 

We will assume that the interface is concentrated in a p lane-para l le l  layer  situated perpendicular  to the Z axis. 
The density distribution in the interface will depend only on Z and VAp = d~p/dZ. As Z --* ~o APi = AP 0, VAp = 
0, whence we obtain the ze ro  value for  the integration constant in (7). Taking this into account we can rewri te  
(7) in the form 

( dAot ~2 
- -D  - ~ -  ] + R tap i - -  AP0] 2 + U [APi-- Ap0] a = 0. (8) 

Solving the differential  equation (8) for  T < Tc and the boundary condition &Pi(0) = 0, we obtain the following 
express ion for  the density profile in the interface when there is no gravitational field: 

{V V APi(Z)-~Apo 1- -  1 - - i h  2 - -  D 

where Ap 0 = ~ It follows f rom (9) that when Z = 0, Ap i = 0, and as Z --- ~ Aoi = &P0- 
differs f rom the express ion for  the interface profile 

Ap = Apo th ~ -D- Z, (10) 

obtained in [7, 11]. The difference is due to the fact  that when calculating the s t ruc ture  of the t ransi t ion layer  
in [7, 11] the approximate equation 4 4 2 2 2 APi--Apo ,-~ [&Pi--Ap0] was used. It is obvious that the density distribution 
in the interface of the mixture close to the cr i t ical  state of vaporizat ion as descr ibed  by Eq. (9) is the same as 
in the case of a pure mater ia l .  

(9) 

The equation obtained 
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We will  now cons ider  the s t ruc tu re  of the in te r face  in the region of the c r i t i ca l  s ta te  of vapor iza t ion  t ak -  
ing the gravi ta t ional  f ield into account.  In this case  the equation for  the equi l ibr ium value of Ap i has  the f o r m  

D dZ (hPi - -  hP~ R ( h p i - - A p o ) - - U ( h p i - - A p o ) 3 = - - Z ,  (11) 
dZ 2 

where  Ap0(Z) is the value of the o rde r  p a r a m e t e r  in the gravi ta t ional  f ield outside the in ter face .  We will  ob-  
tain a solution of this s e c o n d - o r d e r  nonl inear  nonuniform dif ferent ia l  equation for  a number  of l imi t ing d i r e c -  
t ions.  In the neighborhood of the c r i t i ca l  i sochore  [R 7> U (Api--Ap0) 2] the cubic t e r m  in (11) can be neglected,  
a f t e r  which,  for  T > Tc ,  the solution of Eq. (11) takes  the f o r m  

Z 1 
hp i -- hp 0 = C,exp [ vrR~Z] + C2ex p [-- l/r-~-DZ] + R R ] / - ~  sh 1/-R/DZ. (12) 

The constants  C1 and C 2 a re  found f rom the condition that  when Z = 0, zxp i = 0. Taking into account  the fact  
that outside the in ter face  AO0 = Z/R, we can r ewr i t e  (12) in the f o r m  

hp i 2Z 1 sh I/-R/D Z + 2C~ sh V-~D Z. (13) 
R RV R/D 

To obtain the thickness  of the in te r face  Z 0 and' the constant  C1, we will use  the following condit ions,  which w e r e  
used p rev ious ly  in [12] to calcula te  the th ickness  of the in te r face  of a s ing le -component  liquid at  the c r i t i ca l  
point: 

APi [zo-o = APo {zo+o, 

dhp i ! = dhp____&0 I 
dZ ]zo-o dZ Jzo+o' 

dZApi ' dZAp~ zo+o 
dZ z Zo-O= dZ z 

(14) 

(15) 

(16) 

Condition (16) is n e c e s s a r y  in o rde r  to find the value of the d i sp l acemen t  of the densi ty  Am f r o m  the ze ro  value 
obtained when ex t rapola t ing  solution (5) f r o m  the region outside the in te r face  a t  the c r i t i ca l  level  Z = 0. Solv- 
ing the s y s t e m  of equations obtained f rom (13) and (14)-(16) for  Ct, Am,  and Z0, we obtain 

2Z 1 - -  R 2 , (17) 
Ao = - V -D V -DZ, 

Am = Z~ 1 - -  R z 
R R l / ~  sh [/-~-DZ o, (18) 

[11 Zo= v" R/Darch 1-~-R2 " (19) 

Since R " r(x)T, where  y = 1.25, it follows f r o m  an ana lys i s  of Eq. (19), which holds in the region R 7> U(Ap i -  
Ag0) z, that as one approaches  the c r i t i ca l  s ta te  of vapor iza t ion  of the binary mix tu re  the thickness  of the i n t e r -  
face approaches  infinity,  as in [7], i .e . ,  in the neighborhood of the c r i t i ca l  i sochore  the effect  of the ex te rna l  
f ield on the th ickness  of the in terface  is negligible.  But compar i son  of Eqs.  (9) and (17) shows that  a g r a v i t a -  
ta t ional  f ield leads to a considerable  change in the densi ty prof i le  of a b inary  mix tu re  in the in ter face .  

In the neighborhood of the c r i t i ca l  i s o t h e r m  [R 7> U(Ap I -  A90)2 ] we  have for  Ap i a nonlinear  di f ferent ia l  
equation which is difficult  to solve.  But in this case  the d i f ference  between the densi t ies  of the liquid and gas 
phases  is sma l l ,  while the th ickness  of the t rans i t ion  l aye r  is fa i r ly  l a r g e ,  so that  we can a s s u m e  that (Ap l -  
Ap0) in the in te r face  is a smooth function. We then have the approx imate  equation d ( ~ P i - A P o ) / d Z  ~ (zkpi -Apo) /  
L. As a resu l t ,  Eq. (11) for  the c r i t i ca l  i s o t h e rm  can be rewr i t t en  in the f o r m  

D (Apt - -  Ap~ ~- u (At, ~ - -  @o) 3 = z. (2 o) L 2 

Here  zXp 0 = (Z/U) 1/3 is the value of the o rde r  p a r a m e t e r  outside the in te r face ,  while L has  the same  o rde r  of 
magnitude as the th ickness  of the in te r face  Z 0. Solving (20) we obtain 

/ Z \w3 3 /  Z D s 
3 p i =  [-.-U-- ) + ~ - 2 u  q- ~ / ( ~ u ) 2  ~ (3_3ULZ) ~ + ~ _ _ / ( _ ~ U ) 2 . ~  (3__~_~_) . (21) 
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We will use  the following approximat ion  to obtain the th ickness  of the in terface .  As one moves  away f r o m  the 
c r i t i ca l  l aye r ,  the role  of the gradient  t e r m  in (20) becomes  l e s s ,  as  a r e su l t  of which,  in the region of the 
in ter face  boundary,  the following re la t ion  holds: 

U (APi ~ Ap0) a >> D (hp i - -  hP0 ) 
L 2 

The value of the densi ty  at  the in ter face  boundary can then be obtained f r o m  (20) by the method of succes s ive  
approx imat ions ,  which gives 

(22) 
3 L 2 U  ( Z / U )  ~/a j " 

Taking L = Z0, we use  condition (14) and obtain the following express ion  for  the thickness  of the in ter face:  

{ D / 3/8 
Zo =2 ~3 -~ ]  (23) 

Assuming  that D ~ 10 -16 cm 2, peg /P  c ~ 10 -5 cm -1, and U ~ 1, we obtain f r o m  (23) that the thickness  of the in-  
t e r face  has  the value Z 6 ~ 10-(1-2) cm.  

Analys i s  of exp re s s ion  (23) shows that in the neighborhood of the c r i t i ca l  i so the rm  the thickness  of the 
in ter face  is main ly  de te rmined  by the gravi ta t ional  f ield of the ear th  and Cakes the finite value Z 0 ~- 10 -(1-2) cm. 
This  r e su l t  d i f fe rs  radicaUy f r o m  the conclusions a r r i v e d  at  in [7], in which calculat ions of the t r ans i t i on -  
l aye r  th ickness  ignoring the ex te rna l  f ield led to the r e su l t  Z 0 - -  ~ when T = T c. Hence ,  for  a b inary  mix tu re  
si tuated in an ex te rna l  f ield in the t e m p e r a t u r e  region R >> U(APi-APo) 2, when T - -  Tc ,  the thickness  of the 
l i q u i d - v a p o r  t rans i t ion  l aye r  i n c r e a s e s ,  but, beginning at  a ce r ta in  t e m p e r a t u r e ,  which sa t i s f i es  the inequality 
R << U(APi-Ap0)2, the ra te  of i nc rea se  of the in ter face  d e c r e a s e s ,  and a t  a c r i t i ca l  point Z 6 takes  a finite value 
which depends only on the gravi ta t ional  f ield and the concentrat ion of the mix ture .  This  is due to the fact  that 
in the t e m p e r a t u r e  region R << U(APi--Apo) 2 the gravi ta t ional  field begins to have a considerable  effect  on the 
p r o p e r t i e s  of the in te r face ,  and at  the c r i t i ca l  point i t se l f  all  the p r o p e r t i e s  of the t rans i t ion l ayer  a re  due to 
the gravitational field. 

Heft  
Pi 
i 

P 
x 
Ap 

D, R,  U 
Z 
T 

h 

Pc 
Pc  
ap0 
APi 
Z0 

d 

N O T A T I O N  

is the effe ctive L a n d a u -  Ginzburg Hamil tonian;  
is the densi ty ,  
is  the component;  
is the total  densi ty of the b inary  mix ture ;  
is the concentra t ion of  the mix ture ;  
is  the f luctuation in the total  densi ty  of the mix ture ;  
a r e  the p a r a m e t e r s  of the Hamil tonian Heft;  
is the d imens ion less  f ie ld va r iab le ;  
is the dimensionless temperature variable; 
is the height measured from the critical level; 
is the critical density; 
is the critical pressure; 
Is the order parameter outside the interface; 
is the order parameter inside the interphase; 
is the th ickness  of the in te r face ;  
is the depar tu re  of the d imensional i ty  of the space  f r o m  4; 
is the d imensional i ty  of space;  and v, /3, 7 a r e  the c r i t i ca l  indices.  
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HEAT EXCHANGE IN THE FLOW OF A GAS 

SUSPENSION IN A LONG HORIZONTAL 

PIPE 

Yu. Ya. Pechenegov and V. G. Kashirskii UDC 536.244 

The r e su l t s  of an expe r imen ta l  invest igat ion of the hea t  exchange of a ga s - suspens ion  s t r e a m  in 
d i f ferent  lengths of hor izonta l  p ipes  a r e  p resen ted .  

I t  is known [1] that  two-phase  s t r e a m s  of the g a s - s o l i d - p a r t i c l e  type a r e  dis t inguished by a number  of 
high qual i t ies  as the h e a t - t r a n s f e r  agent  and working  subs tance  in power  engineer ing.  The inadequate degree  
of study and the complexi ty  of the m e c h a n i s m  of hea t -exchange  p r o c e s s e s  in the flow of such s t r e a m s  r e su l t  in 
the necess i ty  of the s y s t e m a t i c  accumula t ion  of t es t  data. 

The r e su l t s  of an invest igat ion of hea t  exchange in the motion of a gas suspension in a hor izonta l  pipe a re  
p r e sen t ed  in the r e p o r t  being offered.  A i r  s e rved  as the c a r r i e r  med ium of the s t r e a m ,  while pa r t i c l e s  of 
white m a r b l e  110-220 ~m in s ize we re  used as the solid phase.  

The investigation* was c a r r i e d  out on an expe r imen ta l  instal la t ion for  which a schemat ic  d i ag ra m and 
the m e a s u r e m e n t  p rocedure  was desc r ibed  in [2]. But in con t ras t  to [2], the s t a r t - u p  and heated sect ions 
were  made of one common pipe without joints  or  connections.  The inner d i a m e t e r  of the pipe was 14 ram. 
The heat ing was accompl i shed  with rad ia t ive  e l ec t r i c  fu rnaces  in sect ions  on a pipe length of 4 m. 

The s epa ra t e  de te rmina t ion  of the t r a n s f e r r e d  hea t  flux for  the sect ions  f r o m  the di f ference in the power  
supplied and los t  through the t h e r m a l  insulat ion of the furnaces  made it  poss ib le  to find in each t e s t  the c h a r -  
a c t e r i s t i c s  of the hea t  exchange for  d i f ferent  pipe lengths x = 1, 2, 3, and 4 m.  

In o r d e r  to study the influence of the dynamic conditions of en t rance  of the s t r e a m  on the hea t  exchange 
we provided for  the de l ive ry  of solid pa r t i c l e s  to the ca r ry ing  a i r  at d is tances  of 0.07, 0.3, 0.75, and 1.37 m 
f r o m  the heated  section.  The s t a r t - u p  sect ion had spec ia l  f i t t ing in i ts  upper  pa r t  for  this.  A calculated e s t i -  
mate  of the veloci ty  of the solid pa r t i c l e s  a t  the ent rance  to the heated sect ion,  made on the bas is  of a o n e -d i -  
mensional  flow model ,  showed that with such s t a r t - u p  lengths under  the conditions of the expe r imen t s  the p a r -  
t icle veloci ty  was about 0.2-0.85 of the veloci ty  of the t r anspor t ing  gas. 

The invest igat ion was c a r r i e d  out at f low-ra te  concentra t ions  of the solid phase  of f r o m  0.17 to 8 kg pe r  
1 kg of a i r .  The Reynolds number  of the gas was va r i ed  in the in terva l  of Rew;d  = 1950-18,000. In this case  
the t r anspor ta t ion  of the pa r t i c l e s  was s table  with a s table drop of s t r e a m  p r e s s u r e  over  the pipe length in each 
test .  The s t r e a m  t e m p e r a t u r e  at  the en t rance  to the heated sect ion was in the range of t o = 10-60~ The wall  
t e m p e r a t u r e  along the length of the pipe was kept near ly  constant  and was va r i ed  f r o m  130 to 690~ f r o m  tes t  
to test .  Measu remen t s  in the c ross  sect ions x/d = 35.7 and 207 showed that  it a l s o h a r d l y v a r i e d o v e r t h e p e r l m -  
e t e r  of the pipe in each tes t .  

*Engineer V. I. Rednikov took p a r t  in conducting the t es t s .  
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